
Scientists made a very efficient perovskite solar cell that does not require a hole-conducting layer.
Perovskite solar cells show tremendous promise in propelling solar power into the marketplace. The cells use a hole-transportation layer, which promotes the efficient movement of electrical current after exposure to sunlight. However, manufacturing the hole-transportation organic materials is very costly and lack long term stability.
Publishing in Science, a team of scientists in China, led by Professor Hongwei Han in cooperation with Professor Michael Grätzel at EPFL, have developed a perovskite solar cell that does not use a hole-transporting layer, with 12.8% conversion efficiency and over 1000 hours stability under full sunlight in ambient temperature. The innovation can reduce the cost of perovskite cells, and firmly propel them into the marketplace.
Hybrid organic-inorganic methylammonium lead halide perovskites have attracted intense attention for thin-film photovoltaics, due to their large absorption coefficient, high charge carrier mobility and long diffusion length. However, these cells are also costly because of the hole-transportation layer, which demands high purity materials and complicated fabrication procedures.
A team of scientists at the Michael Grätzel Center for Mesoscopic Cells of Huazhong University in China in cooperation with the Laboratory for Photonics and Interfaces at EPFL directed by Michael Grätzel have successfully manufactured a perovskite solar cell that does not need a hole-transportation layer. The solar cell shows comparative energy conversion efficiency (12.8%) and was shown to be stable for over 1000 hours in direct sun exposure.
The scientists fabricated the new solar cell by drop-casting a solution of lead iodide, methylammonium iodide, and 5-ammoniumvaleric acid iodide through a porous carbon film. The solar cell's scaffolding was made using a double layer of titanium dioxide and zirconium dioxide covered by a porous carbon film and amino acid templating agent was used to promote the pervoskite nucleation and crystal growth within the pores . The resulting perovskite crystals showed much higher electrical charge generation and collection efficiency than conventional hole conductor free perovskite cells. The use of organic-hole conductor free triple layer also resulted in strikingly high stability.
Perovskite solar cells are ideally placed to meet the increasing demands for renewable energy in the future. This breakthrough innovation addresses one of their major limiting factors, and paves the way for a new, cost-effective branch of development in this type of solar cell.
GMT 14:36 2018 Sunday ,14 January
Fossil fuels blown away by wind in cost terms: studyGMT 18:20 2018 Thursday ,11 January
Ukraine to launch its first solar plant at ChernobylGMT 18:44 2018 Tuesday ,09 January
Finland's Fortum snaps up EON's fossil fuels stakeGMT 17:39 2018 Wednesday ,03 January
Norway powers ahead electrically with over half of new car sales now electric or hybridGMT 15:36 2018 Wednesday ,03 January
Minister of Mining Says Govt. Invested MAD 12.3 Billion between 2003-2017GMT 18:00 2017 Saturday ,23 December
Energy prices bump key US inflation index up in NovemberGMT 09:01 2017 Friday ,15 December
BP plan to buy Australian petrol pump network blockedGMT 14:54 2017 Monday ,27 November
Belarus nuclear power plant stirs fears in Lithuania
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2025 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2025 ©
Send your comments
Your comment as a visitor